Example answers to PE Questions for
GUIs, Networking and Multithreaded Programming

Medialogy, Semester 4, 2009
Aalborg University (Aalborg)

Multithreaded programming

1.

Word processor: event handling thread handles keyboard input while
worker threads manage spell-checking and periodic backup.

Web crawler: multiple threads simultaneously get information from many
different web pages and store the information in a database.

Lots of other possibilities.

Depends on project.

A race condition can occur when two threads can access the same data
simultaneously. The final state of the data depends on the specific order
in which the instructions in the different threads are executed. The final
state of the data is unpredictable because the specific order in which the
instructions in the independent threads are executed is not controlled.
The threads are therefore “racing” each other.

A thread is created using the Thread constructor:

Thread t = new Thread();

A thread is started using the start() method:

t.start();

AJava thread does not necessarily need to be stopped manually, but if it
does, the interrupt method can be used:

t.interrupt():

A new thread can be created by subtyping the Thread class, overriding its
run() method and then constructing an instance of this new subclass of
Thread. A thread can also be created by defining a new class that
implements the Runnable interface. This involves implementing the
Runnable interface’s run() method. This new Runnable object can then be
given as an argument to the constructor of a normal Thread.
Implementing the Runnable interface is usually preferable to subtyping
Thread as it means that the new class can inherit from a class other than
Thread.

xinterface s

Runnable - = = = = - Thread

run{)

run()

Interference is when interleaved operations from different threads on the
same shared data could corrupt the data. The code segments that contain
interfering actions are called critical sections or critical regions.



8. Code in critical regions should be synchronized on shared data. This
means that while code in a critical region is being executed, the thread
that is executing the code has a lock on the shared data which ensures
that no other thread can access that shared data while the synchronized
critical region of code is being executed.

9. Given an object, obj, that has a method, meth(), then meth() should be
declared synchronized if it is important that no other thread should
access obj (e.g.,, change its state) while meth() is executing. A
synchronized method acquires a lock on the object referenced by this.
That is, if meth() is synchronized, then while obj.meth() is executing,
meth() has a lock on obj.

10. synchronized(obj) {
obj.methodA();
obj2.methodB(obj);

}

11. Server-side synchronization is where the object to be locked takes
responsibility for synchronizing code that uses (often by using a
synchronized method). Client-side synchronization is where
responsibility for synchronizing critical regions lies with the code that
uses the object to be locked. Client-side synchronization is usually
accomplished using synchronized statements. Server-side
synchronization is generally more secure because each the programmer
doesn’t have to remember to sychronize client code every time it uses the
object to be locked. However, server-side synchronization can lead to
unnecessary blocking of threads which can slow down a program.
Conversely, client-side synchronization allows the programmer to decide
when and when not to synchronize code which can make the code more
efficient.

12. Thread.currentThread()
13. Thread.sleep(delay). Throws an InterruptedException.
14.t.join()

15. A thread, t, can be stopped by calling t.interrupt(). This sets the interrupt
status flag in t and the next time a method is run which throws an
InterruptedException, an InterruptedException is thrown. This can be
caught by a catch block which usually simply causes the ¢t to return. If t’s
run() method does not call any methods that throw InterruptedException,
then the programmer must manually code a periodic check for whether
the thread has been interrupted (using the Thread.interrupted() method).

16. The message t.interrupt() causes the interrupt status flag to be set to true
for Thread t. If Thread.interrupted() called within ¢ to check status of
interrupt status flag, then the flag is cleared and no InterruptedException
is thrown. A second thread, b, can find out if t has been interrupted by
calling t.isInterrupted(), which does not clear the interrupt status flag.
When an InterruptedException is thrown, the interrupt status flag is
cleared.



17. tisAlive()

18. A guarded block is a block of code in a thread t that is only run when some
other thread has set up the conditions necessary for the guarded block in
t to be run. When execution in t arrives at the beginning of a guarded
block, t should stop executing and wait until a specified condition is
satisfied before proceeding.

19. A guarded block can be implemented by using a while loop that continues
to iterate until its condition becomes false. This means that the waiting
thread is actually continuously using the processor while it is waiting
because it is repeatedly checking the condition on the while loop. This
uses resources unnecessarily and is called busy waiting.

20. A call to wait() is coded inside a try-catch block inside a while loop whose
condition is the one that has to be false in order for the guarded block to
be executed:

while(!condition) {
try {
wait();
} catch (InterruptedException e) {
//Handle interruption
}
}

This while loop has to be inside a synchronized method of some object,
obj, which is called in the thread that has to be suspended. wait()
suspends the current thread and releases the lock on this object. The
notifyAll method is called by some second thread on the object obj, that is,

obj.notifyAll();

This causes the wait() method to reacquire the lock on this object and
check the loop condition. wait() throws an InterruptedException if its
thread is interrupted while it is waiting. Note that there is no busy
waiting.

21. Initial thread: usually just the main thread, running when the program
starts.
Event dispatch thread: code that interacts with Swing, particularly event-
handling code executes on this thread.
Worker threads: “Background” threads on which time-consuming tasks
are executed.

22.AJava GUI should implement the Runnable interface and execute on the
Event Dispatch Thread.

23. A GUI is typically started in Java by calling
javax.swing.SwingUtilities.invokeLater(gui)
where gui is a Runnable object (i.e., it implements the run() method).



24.JFrame
25. A Worker thread.
26.The event dispatch thread

27.The content pane contains all the Swing components except the
JMenuBar.

28. pack()
29.jFrame.setVisible(true);
30. A JPanel.

31. BorderLayout: Five regions, four around the four sides, one in the middle.
Each region can contain one component (which can be a JPanel that
contains more than one component).

FlowLayout: Components placed one after the other in a row, new row
started if container not wide enough to hold all the components.
Components centred if container wider that sum of widths of
components.

BoxLayout: Stacks components in a column or places them in a row.
GroupLayout: Defines vertical and horizontal layouts separately.
Components arranged into sequential or parallel groups arranged in a
hierarchy. A group may contain components or other groups.

32.0ne (however this can be a JPanel that contains multiple components).
33.BorderLayout.
34. FlowLayout

35. The JButton emits an ActionEvent object whenever it is pressed. This
ActionEvent will cause code to execute if there is an ActionEventListener
object that has been registered as a listener with the button. This is done
using code something like:

button.addActionListener(listenerObject);

Now, when the button is pressed, the ActionEvent emitted is received by
the registered ActionEventListener object and causes this object to run its
actionPerformed(ActionEvent event) method.

36. The network interface layer is the hardware used to communicate bits
from one physical location to another (e.g., ethernet, bluetooth).

37.2732 =4294967296. We will run out of IP addresses within a few years.
IPv6 is a proposed solution to this which provides 2#128 addresses.

38. TCP is a reliable protocol which is connection-oriented. UDP is an
unreliable protocol that is datagram-oriented. UDP is faster, TCP is more
reliable.



39.UDP is often used for video streaming where speed is paramount and a
few lost packets is tolerable. Sometimes used for voice streaming and
provides basis for DNS.

40. A socket is an endpoint in a TCP connection. A socket is also used to send
and receive datagrams using UDP. Each socket is associated with a
particular port on a particular machine. Each application that needs to
send or receive data across a network will be listening for data on a
specific port. There are 65536 ports, each identified using a 16-bit
number. Ports 0-1023 are “well-known ports” and are assigned to server
applications executed by privileged processes (e.g. UNIX root server).
Such ports include 80 for http communication, 20 and 21 for FTP servers,
etc. Ports 1024 - 49151 are registered ports and should be used for
specific purposes only (e.g., 8080 for an http server run using ordinary
privileges). Ports 49152 and above are dynamic or private ports and can
be freely used.

41.java.net

42. Protocol: https
Host name: www.chromamorph.com
File name: /papers/icmc.html
Port number: 8080
Reference: introduction
Resource name:
www.chromamorph.com:8080/papers/icmc.html#introduction

43.URL url = new URL(“http://www.smurf.com/splurge.html”)

44, openStream() method provides a stream of bytes to read from.
InputStreamReader converts the byte stream into a character stream.
BufferedReader causes lines or chunks of characters to be read from the
character stream provided by InputStreamReader.

45. In the server program, a new ServerSocket object is constructed and
assigned to listen on a specified port. The accept method is called on the
ServerSocket object which causes the program to block and wait for an
incoming connection request which will be accepted. Meanwhile, the
client program creates a Socket object and assigns this to the same port
listened to by the server program’s ServerSocket object on the server’s
machine. The server and client programs can then obtain input and
output streams on their sockets and thus send and receive data across the
connection.

46. A DatagramSocket object (socket) is created in the server program and
assigned a port number. A DatagramPacket object (packet) is then
constructed which can be used to store a packet of data received on the
socket using the socket.receive(packet) method. The IP address and port
number of the sending application’s socket can be found from the
received packet using the DatagramPacket’s getAddress() and getPort()
methods. A packet can be sent back to the client using the
socket.send(packet). A DatagramSocket object is also created in the client
program and this socket is used to send a DatagramPacket to the IP



address and port number of the server’s DatagramSocket. The
DatagramPacket can be addressed appropriately by using the
DatagramPacket constructor that takes an IP address and port number as
two of its arguments:

DatagramPacket packet = new
DatagramPacket(buffer,bufferLength,ipAddress,portNumber)



