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Abstract. We introduce two algorithms, RECURSIA and RRT, designed to in-
crease the compression factor achievable using point-set cover algorithms based
on the SIA and SIATEC pattern discovery algorithms. SIA computes the max-
imal translatable patterns (MTPs) in a point set, while SIATEC computes the
translational equivalence class (TEC) of every MTP in a point set, where the
TEC of an MTP is the set of translationally invariant occurrences of that MTP in
the point set. In its output, SIATEC encodes each MTP TEC as a pair, 〈P, V 〉,
where P is the first occurrence of the MTP and V is the set of non-zero vectors
that map P onto its other occurrences. RECURSIA recursively applies a TEC
cover algorithm to the pattern P , in each TEC, 〈P, V 〉, that it discovers. RRT
attempts to remove translators from V in each TEC without reducing the total set
of points covered by the TEC. When evaluated with COSIATEC, SIATECCom-
press and Forth’s algorithm on the JKU Patterns Development Database, using
RECURSIA with or without RRT increased compression factor and recall but
reduced precision. Using RRT alone increased compression factor and reduced
recall and precision, but had a smaller effect than RECURSIA.

Keywords: Pattern discovery · Point sets · Music analysis · Data compression ·
SIATEC · COSIATEC · SIATECCompress · Forth’s algorithm · Geometric pat-
tern discovery in music.

1 Introduction

The principle of parsimony posits that, when given two models that account equally
accurately for a given set of observations (data), then the simpler model is less likely
to be an accurate description of the data by chance. That is, the simpler model is more
likely to be a faithful representation of the true process that gave rise to the data. This
principle, commonly known as “Ockham’s razor”, has been formalized in various ways
in recent times, including Rissanen’s minimal description length principle [17] and Kol-
mogorov’s structure function [18]. The principle has been one of the foundational prin-
ciples of scientific enquiry since antiquity and recent results in information theory [19]
have shown that data compression is almost always the best strategy both for model
selection and prediction.

In recent years, we have had some success in using compression-based point-set pat-
tern discovery algorithms, such as COSIATEC [13, 10, 14, 16], SIATECCOMPRESS
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[13, 11, 14] and Forth’s algorithm [4, 5], in conjunction with normalized compression
distance, to carry out classification tasks such as folk song tune family detection [8,
13, 12]. Moreover, Louboutin and Meredith [8] found a highly significant correlation
between compression factor and performance on the task of automatically discovering
fugue subjects and countersubjects [6, 7]. This motivates us to search for ways to im-
prove the compression factor achieved by such algorithms in the hope that improving
compression factor may also result in improved performance on a variety of musicolog-
ical tasks. Our research programme is driven by the hypothesis that shorter encodings
of data objects represent better ways of understanding those objects. We therefore strive
to devise algorithms that compute encodings of musical data objects that are as parsi-
monious as possible.

Let D be a set of k–dimensional points, such that D ⊂ Rk and |D| = n. We
call D a dataset. For any vector, v ∈ Rk, the maximal translatable pattern (MTP) in
D is defined as MTP(v,D) = D ∩ (D − v). The SIA algorithm [15] computes all
the non-empty MTPs in such a dataset in Θ(n2 log2 n) time. Two point sets, P1, P2,
are translationally equivalent, denoted by P1 ≡T P2, if and only if there exists a
vector, v, such that P1 = P2 + v. The translational equivalence relation partitions
the powerset of D exhaustively and exclusively into translational equivalence classes
(TECs), such that the TEC to which a point set, P ⊆ D, belongs is defined to be
TEC(P ) = {Q | Q ⊆ D ∧Q≡T P}. The SIATEC algorithm [15] computes the TEC
of every non-empty MTP in a dataset, D, in Θ(n3) time. A TEC, TEC(P ), can be
encoded in a compressed form as a pair, 〈P, V 〉, where V is the set of non-zero vec-
tors, {v | P + v ⊆ D}. Each TEC in the output of SIATEC is encoded in this form.
Given a TEC, T = TEC(P ) = 〈P, V 〉, we define P (T ) = P and V (T ) = V . P (T )
is called the TEC’s pattern and V (T ) is called the TEC’s translator set or set of trans-
lators. The covered set of a TEC, T , is the union of the point sets in the TEC and
is given by C(T ) = P ∪

⋃
v∈V (T ) (P (T ) + v). The compression factor of a TEC,

T = TEC(P ) = 〈P, V 〉 is defined as CF(T ) = |C(T )|/ (|P (T )|+ |V (T )|). It is the
ratio of |C(T )|, the number of points whose coordinates need to be explicitly specified
if the covered set of the TEC is described in extenso, to |P (T )| + |V (T )|, the number
of points and vectors whose coordinates need to be specified if the TEC is encoded as a
pair, 〈P, V 〉, as defined above.

SIATECCOMPRESS and Forth’s algorithm use SIATEC to compute the MTP
TECs in a dataset, D, and then attempt, using a greedy strategy, to select a subset of
these TECs, E, such that

⋃
T∈E C(T ) = D and

∑
T∈E (|P (T )|+ |V (T )|) is mini-

mized. That is, these algorithms attempt to find a minimum-length description of the
dataset in terms of a cover constructed from TEC covered sets. The TEC covered
sets in the covers computed by SIATECCOMPRESS and Forth’s algorithm may share
points. However, the COSIATEC algorithm typically achieves better compression than
these algorithms by partitioning the input dataset exhaustively and exclusively into non-
intersecting TEC covered sets. It does this by incrementally constructing an encoding,
E, by (1) running SIATEC, (2) adding the TEC with the best compression factor to
E, (3) removing the covered set of this TEC from D and then repeating this three-step
process on progressively smaller, unencoded subsets of the dataset until all the points
in the dataset have been covered.
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RECURSIA(A, D)
1 E← A(D)
2 if |E| = 1 ∧ |E[0][1]| = 1 return E
3 for i← 0 to |E| − 1
4 e← RECURSIA(A,E[i][0])
5 if |e| > 1 ∨ |e[0][1]| > 1
6 E[i][0]← e
7 return E

Fig. 1. The RECURSIA algorithm

In this paper, we introduce two novel techniques for improving the compression
factor achieved using TEC cover algorithms. First, an algorithm, RECURSIA, is pre-
sented, that recursively applies a TEC cover algorithm to the pattern, P , in each TEC
in the cover it generates. Second, an approximation algorithm, RRT, is presented, that
aims to remove as many translators from each TEC as possible without removing points
from its covered set. The two techniques are evaluated separately and in combination
on the effect that they have on compression factor, recall and precision, when used with
COSIATEC, SIATECCOMPRESS and Forth’s algorithm on the JKU Patterns Devel-
opment Database [2].

2 The RECURSIA algorithm

Figure 1 gives pseudocode for the RECURSIA algorithm. RECURSIA has two param-
eters, a TEC cover algorithm, A (e.g., COSIATEC, SIATECCOMPRESS or Forth’s
algorithm) and a dataset D. RECURSIA runs A on D to obtain an encoding, E (line 1
in Fig. 1), which is a list of TECs, E = 〈T1, T2, . . . , T|E|〉. Each TEC, Ti, is encoded
as a pair, 〈Pi, Vi〉, as defined above. If the encoding, E, contains only one TEC and the
pattern for this TEC has only one occurrence, thenA failed to find any non-trivial MTPs
in D. In this case, A is not applied to the pattern in this TEC, so RECURSIA returns E
(see line 2 in Fig. 1). If A finds more than one TEC or at least one TEC whose pattern
has more than one occurrence, then RECURSIA is applied recursively to the pattern,
Pi = E[i][0], in each TEC in E (Fig. 1, lines 3–4). This generates a new encoding, ei,
for each pattern, Pi. If the encoding, ei, for a pattern, Pi, contains more than one TEC,
or a TEC whose pattern occurs more than once, then ei is a compressed encoding of Pi

and ei replaces Pi in the TEC, E[i] (Fig. 1, lines 5–6).

3 The RRT algorithm

Given a TEC, T = TEC(P ) = 〈P, V 〉, the RRT algorithm attempts to replace V with
one of the smallest possible subsets of V—let us call it V ′—such that C(〈P, V ′〉) =
C(T ), where C(T ) denotes the covered set of T , as defined above. Exhaustively testing
every subset of V to determine if the resulting covered set is the same as C(T ) would
take time exponential in the size of V and would therefore only be practical for rela-
tively small translator sets. RRT therefore uses a greedy approximation strategy with a
polynomial time complexity instead of carrying out an exhaustive search.



4 D. Meredith

RRT(T )
1 F← COMPUTEPOINTFREQSET(T )
2 if F[|F| − 1][0] = 1 return T
3 S← COMPUTESIAMVECTORTABLE(T,F)
4 R← COMPUTEREMOVABLEVECTORS(T,S)
5 M ← COMPUTEMAXPOINTS(T,R,F)
6 if M = ∅ then T [1] \← R, return T
7 V ← COMPUTEVECTORMAXPOINTSETPAIRS(M )
8 Q← COMPUTERETAINEDVECTORS(V)
9 return REMOVEREDUNDANTVECTORS(T,Q,R)

Fig. 2. The RRT algorithm

Figure 2 provides pseudocode for the RRT algorithm. For convenience, we define
the function V (p, T ) to be the set of vectors in V (T ) that map points in P (T ) onto the
point p. Formally,

V (p, T ) = {p− q | p− q ∈ V (T ) ∧ q ∈ P (T )} . (1)

The first step in the algorithm is to compute for each p ∈ C(T ) the ordered pair
〈f(p, T ), p〉, where f(p, T ) = |V (p, T )|. These ordered pairs are placed in a sequence
in lexicographical order and stored in the variable, F (Fig. 2, line 1). We call f(p, T )
the frequency of p in T . For example, for the TEC,

〈{〈1, 1〉, 〈2, 2〉, 〈3, 3〉}, {〈0, 0〉, 〈1, 1〉, 〈2, 2〉, 〈3, 3〉, 〈4, 4〉}〉 (2)

the COMPUTEPOINTFREQSET function would return

〈〈1, 〈1, 1〉〉, 〈1, 〈7, 7〉〉, 〈2, 〈2, 2〉〉, 〈2, 〈6, 6〉〉, 〈3, 〈3, 3〉〉, 〈3, 〈4, 4〉〉, 〈3, 〈5, 5〉〉〉.

If, for some p ∈ C(T ), f(p, T ) > 1, then we call p a multipoint. If F contains no
multipoints, then none of the translators in V (T ) can be removed without also removing
points from C(T ). This will be the case if and only if the frequency of the last entry in
F is one. We therefore check for this in line 2 of Fig. 2 and return the TEC unchanged
if it is the case.

The set of translators that can be removed from V (T ) is a subset of those vectors
that map the whole pattern, P (T ), onto multipoints. That is, if a translator, v ∈ V (T ),
maps any point in P (T ) onto a point in C(T ) that is not a multipoint, then we know
that v cannot be removed from V (T ) without removing points from C(T ). We there-
fore define a removable vector to be a translator that maps the TEC’s entire pattern,
P (T ), onto a set of multipoints. In lines 3–4 of Fig. 2 we compute a list, R, of these
removable vectors. This is done by using the initial steps of the SIAM algorithm [10,
20] to compute the set, S = {〈q − p, p〉 | p ∈ P (T ) ∧ q ∈ C(T ) ∧ f(q, T ) > 1}.
This set S or vector table is sorted lexicographically to give the list, S, (line 3 in Fig. 2)
from which the maximal matches of the TEC pattern, P (T ), to the multipoints in C(T )
can be obtained. For example, for the TEC in Eq. 2, COMPUTESIAMVECTORTABLE
returns the following sorted SIAM vector table, where each maximal match is printed
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on its own line:
〈〈〈−1,−1〉, 〈3, 3〉〉,

〈〈0, 0〉, 〈2, 2〉〉, 〈〈0, 0〉, 〈3, 3〉〉,

〈〈1, 1〉, 〈1, 1〉〉, 〈〈1, 1〉, 〈2, 2〉〉, 〈〈1, 1〉, 〈3, 3〉〉,

〈〈2, 2〉, 〈1, 1〉〉, 〈〈2, 2〉, 〈2, 2〉〉, 〈〈2, 2〉, 〈3, 3〉〉,

〈〈3, 3〉, 〈1, 1〉〉, 〈〈3, 3〉, 〈2, 2〉〉, 〈〈3, 3〉, 〈3, 3〉〉,

〈〈4, 4〉, 〈1, 1〉〉, 〈〈4, 4〉, 〈2, 2〉〉,

〈〈5, 5〉, 〈1, 1〉〉〉

(3)

The COMPUTEREMOVABLEVECTORS function (Fig. 2, line 4) scans this sorted SIAM
vector table to identify the vectors that map the entire pattern onto multipoints (i.e.,
the ones for which the maximal matches have the same cardinality as the TEC pattern
itself). For the TEC in Eq. 2, the list R returned by COMPUTEREMOVABLEVECTORS
would be 〈〈1, 1〉, 〈2, 2〉, 〈3, 3〉〉.

We say that p ∈ C(T ) is a maxpoint if and only if all the vectors in V (p, T ) (as
defined in Eq. 1) are removable vectors, i.e., V (p, T ) ⊆ R. If C(T ) contains any
maxpoints, then it will not be possible to remove all the vectors in R from V (T )
without also removing the maxpoints from the covered set. Indeed, we can remove
all the vectors in R from V (T ) if and only if C(T ) contains no maxpoints. In line
5 of Fig. 2, the maxpoints are computed and then, in line 6, if there are no max-
points, all the removable vectors, R, are removed from the TEC’s translator set and
the modified TEC is returned. The COMPUTEMAXPOINTS function, called in line
5 of the RRT algorithm (line 5 in Fig. 2) actually returns a set of ordered pairs,
M = {〈p1, R1〉, 〈p2, R2〉, . . . , 〈p|M |, R|M |〉}, where each 〈pi, Ri〉 gives the maxpoint,
pi, and the set of removable vectors, Ri, that map pattern points onto that maxpoint.
As an example, the TEC in Eq. 2 has just one maxpoint, so the COMPUTEMAXPOINTS
function returns the following: {〈〈4, 4〉, {〈1, 1〉, 〈2, 2〉, 〈3, 3〉}〉}.

If C(T ) contains maxpoints, then our goal is to find the smallest subset of R that
contains, for each maxpoint, at least one vector that maps a point in P (T ) onto that max-
point. We first compute a list of 〈v, P 〉 pairs that give, for each removable vector, v, the
set of maxpoints, P , onto which v maps points in the TEC pattern, P (T ). This is com-
puted by the COMPUTEVECTORMAXPOINTSETPAIRS function in line 7 of the RRT
algorithm in Fig. 2. Formally, COMPUTEVECTORMAXPOINTSETPAIRS computes the
set, V , defined as follows: V = {〈v, P 〉 | v ∈ R∧P = {p | p ∈ M ∧p− v ∈ P (T )}}.
This set is then sorted to give an ordered set, V, so that the 〈v, P 〉 pairs are in decreas-
ing order of maxpoint set size (i.e., pairs in which P is larger appear earlier in the list).

COMPUTERETAINEDVECTORS(V)
1 Q← ∅
2 while V 6= 〈〉
3 Q← Q ∪ {V[0][0]}
4 for i← 1 to |V| − 1 do V[i][1]← V[i][1] \V[0][1]
5 Y ← 〈〉
6 for i← 1 to |V| − 1
7 if V[i][1] 6= ∅ then Y ← Y ⊕ 〈V[i]〉
8 V ← Y
9 return Q

Fig. 3. The COMPUTERETAINEDVECTORS function. (A ⊕ B concatenates the lists A and B.)



6 D. Meredith

We then use V in a greedy strategy to find a small subset of R that contains, for
each maxpoint, at least one vector that maps a point in P (T ) onto that maxpoint. This
set of retained vectors is computed in line 8 of Fig. 2 by the COMPUTERETAINEDVEC-
TORS function (shown in Fig. 3). The first step in this function is to add to the list of
retained vectors, Q, the vector associated with the largest set of maxpoints, that is, the
first in the list V (see lines 1–3 of Fig. 3). All the maxpoints mapped to by that vector
from points in the TEC pattern can then be removed from the maxpoint sets of the other
elements in V (line 4 in Fig. 3). The effect of lines 5–8 of Fig. 3 is to remove from V
the first element and every other element whose maxpoint set is empty after removing
the maxpoint set of the first element. The process is repeated, with the vector of the first
pair in the list being selected on each iteration until V is empty. This results in a list, Q,
of retained vectors that constitute a subset of the removable vectors that is sufficient to
generate all the maxpoints. Finally, in line 9 of Fig. 2, the REMOVEREDUNDANTVEC-
TORS function removes from the TEC’s set of translators all removable vectors that are
not retained vectors.

4 Evaluation

Figure 4(a) shows the effect of RECURSIA and RRT on the compression factor
achieved using a variety of SIATEC-based TEC cover algorithms, when these algo-
rithms were used to analyse the five pieces in the JKU Patterns Development Database
[2]. Three basic algorithms, COSIATEC, SIATECCOMPRESS and Forth’s algorithm
were run, each with and without compactness trawling [3] (indicated by ‘CT’) and with
or without the SIA algorithm replaced by SIAR [1] (indicated by ‘R’). Each of these 12
algorithms was run in its basic form (orange curve), with RECURSIA (blue curve), with
RRT (green curve), and with both RECURSIA and RRT (red curve). As expected, using
RECURSIA and RRT together nearly always improved compression factor, with par-
ticularly large gains being observed on the Beethoven and Mozart sonata movements
when Forth’s algorithm was used with compactness trawling. Using RRT alone only
had a noticeable effect on the Bach fugue and the Beethoven sonata movement. Over
all pieces and algorithms, using RECURSIA in combination with RRT improved com-
pression factor by 12.5%, using RECURSIA alone improved it by 9.2% and using RRT
alone improved it by 2.1%. Figure 4(b) shows the effect that RECURSIA and RRT had
on three-layer precision (TLP) [13], averaged over the pieces in the JKU-PDD and for
the same 12 algorithms, each run in “Raw” mode, “BB” mode and “Segment” mode
(see [13]). On average, over all pieces, algorithms and modes, using RECURSIA in
combination with RRT reduced TLP by 20.3%, using RECURSIA alone reduced it by
21.2% and using RRT alone reduced it by 0.7% (see Fig. 4(b)). On the other hand, on
average, over all pieces, algorithms and modes, using RECURSIA and RRT together
increased three-layer recall (TLR) [13] by 7.2%, using RECURSIA alone increased it
by 10.3%. Using RRT alone reduced TLR by 3.7% (see Fig. 4(c)).
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Fig. 4. Effect of RECURSIA and RRT on compression factor (a), three-layer precision (b) and
recall (c), over the pieces in the JKU-PDD.

5 Conclusion

Two algorithms, RECURSIA and RRT, have been presented, designed to increase the
compression factor achieved using any TEC cover algorithm. When tested with three
basic algorithms and evaluated on the JKU Patterns Development database, using RE-
CURSIA with or without RRT increased compression factor and three-layer recall but
reduced three-layer precision. Using RRT alone generally had a smaller effect than us-
ing RECURSIA, and, on average, increased compression factor but reduced both recall
and precision on the JKU-PDD.

Supplementary materials

The results reported in this paper were obtained using the implementations of the al-
gorithms in the OMNISIA software [9]. The source code for the version of OMNISIA
used here is available on GitHub at https://github.com/chromamorph/omnisia-
recursia-rrt-mml-2019. An executable JAR file is also available at
http://www.titanmusic.com/software/omnisia/201904151348OMNISIA.zip.
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