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Abstract. We introduce using maximum entropy reinforcement learn-
ing (MERL) for training Sequence Generative Adversarial Networks as
a technique for obtaining more diverse samples and alleviate mode drop
(MD) and mode collapse (MC) problems. We implemented generators
using the ordinary REINFORCE algorithm, REINFORCE with reward
baseline and MERL REINFORCE. We trained the models to learn to
generate music using the Nottingham data set. We observed that, with-
out pre-training, the algorithms fail to produce high reward trajectories.
We showed that the pre-trained REINFORCE models mainly explore
trajectories of their initial policies and we argue that the method might
be more suitable for fine-tuning models than learning generative distri-
butions from scratch.
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1 Introduction

This paper builds on the work of Yu et al. (2016) which tokenizes musical ex-
amples and uses a REINFORCE-based sequential generator to train a genera-
tive adversarial network (GAN) (Goodfellow et al., 2014) to generate music. Yu
et al. (2016) primarily reported results on synthetic data generated by a tar-
get Long Short-Term Memory (LSTM) network (Hochreiter and Schmidhuber,
1997). However, they also applied the technique to learn the melody tracks of
folk music from the Nottingham dataset.® The dataset also contains chords and
Lee et al. (2017) used the same dataset with a tokenization that stores melody
octave, melody pitch-class, chord root octave, and chord class. Lee et al. (2017)
reported issues of mode collapse or mode drop. Mode collapse (MC) occurs when

3 http://www.iro.umontreal.ca/~1lisa/deep/data
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two modes within the original data distribution merge into one in the generator
distribution. In this case, the generator will typically perform poorly on both
modes. Mode drop (MD) occurs when the generator removes all probability den-
sity from one mode. This can happen if the generator prematurely (over-)fits the
discriminator that has not learned all modes of the data.

We implement and discuss a novel approach to obtaining more diverse sam-
ples and solving the MD and MC problems by using the MERL variant of the
REINFORCE algorithm. It is well-known that the REINFORCE algorithm can
be improved using a reward baseline (Sutton and Barto, 2018). We therefore im-
plemented and compared the ordinary REINFORCE algorithm with a version
of REINFORCE using a reward baseline.

For the Nottingham dataset, Yu et al. (2016) and Lee et al. (2017) reported
the performance of sequence GANs using a sentence version (as opposed to a
corpus version) of the bilingual evaluation understudy (BLEU) score where the
entire training set is used as reference translations. This is problematic for at
least the following three reasons:

— A perfect score can be achieved if the n-grams of a generated example are
present with multiplicity across different training examples.

— The score is non-decreasing when the number of samples in the training set
is increased.

— The score does not account for the ordering of the n-grams.

Nonetheless we report the BLEU score for our models in order to facilitate
comparison with the results obtained by Lee et al. (2017) and Yu et al. (2016).
We will perform a quantitative performance analysis of the implemented
models on the Nottingham dataset in terms of negative log-likelihood (NLL).
We report quantitative diagnostic GAN metrics. For the generator, we report
the mean reward and standard deviation of the reward. For the discriminator,
we report the precision and recall. Qualitatively we inspect samples that are:
false-positive (FP), true-negative (TN), and generated from MD/MC.

2 Related work

Much work on using neural networks (NNs) for tokenized sequence generated
music has been done using Recurrent Neural Networks (RNNs) (Oore et al.,
2018). Huang et al. (2018) adopt the popular natural language processing trans-
former model, which is neither an RNN nor a convolutional neural network
(CNN), but uses self-attention to generate symbolic music as a sequence of to-
kens. Lattner et al. (2016) use a convolutional energy-based model to obtain
higher-level structured generated samples. Oord et al. (2016) use convolutional
dilation in deep neural networks to generate audio samples of music from large
corpora of audio files. Liu et al. (2019) attempt to generate audio samples of
singing voices using GANs. Jaques et al. (2016) pretrain a recurrent neural net-
work (RNN) and fine-tune the model using a MERL algorithm. The reward
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function is human-engineered and based on music-theoretical concepts. Schmid-
huber (2010) developed a theory of creativity based on reinforcement learning
(RL), where an intrinsic reward is given for the ability to generalize new exam-
ples.

3 Model

3.1 Sequence GAN

Sequence GAN (Yu et al., 2016) is a framework proposed as a way of training
GANs (Goodfellow et al., 2014) for sequences of discrete tokens, © = {x; : z; €
V3L |, using RL, where, at step ¢/, the Markov decision process (MDP) actions
are V, the states are the long short-term memory (LSTM)-compressed context
{x; : 2, € V}I_, and the rewards are

o — {D(x) ift' =T

0 otherwise

where D(z) is the output of a discriminator network.

3.2 Generator Algorithms

REINFORCE (Policy Gradient) Policy gradients express a policy 7 by a
differentiable function (e.g. NN), which can be optimized using gradient descent
(GD). The gradient is given by (Sutton and Barto, 2018):

T

T
Vo J(0) = ZE(SM-”M)NWQ [V@ log 7Ta(xt|st)< Z Rtl)

t=0 t'=t+1

(1)

Where Eq. 1 is approximated by Monte Carlo sampling N trajectories.

REINFORCE with reward baseline If the discriminator dominates the
GAN min-max game (Goodfellow et al., 2014) then for many trajectories i € I C
1,...,N, we have D({x;,}_;) € [0,1] is close to zero. The contribution of these
actions z;; will not affect the gradient, when computing Eq. 1. Therefore the
agent is not discouraged from picking actions that are producing poor samples,
but is only encouraged to pick actions that are producing good results. A way
to mitigate this problem is by using a baseline. Let b(sy) be a state-dependent
baseline. It can be shown (Sutton and Barto, 2018) that if Eq. 1 is replaced by:

T T
> En, lvglogm(mst)( > Rt,b(st,)ﬂ

t=0 t'=t+1
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then the expected value of the gradient step is unchanged. A simple choice of a
baseline is the mean reward:

1 .
b(sv) = & Z D({wit}i—y)

Then Ry —b(sy) can be perceived as an advantage (possibly negative) of selecting
this action against a mean action.

MERL REINFORCE. When MDs and MCs occur, the entropy of the distri-
bution typically decreases. MERL (Ziebart et al., 2008) deals with maximizing
the expected reward while keeping the entropy of the policy high. A MERL
version of the REINFORCE gradient can be derived as (Levine, 2018):

T
Vo logmo(xt|st) Z <

t'=t

T

VoJmern(0) = Z E(s, 20)~meo
t=0

Ry — alogmg(wyr|sy) — 1)] (2)

Where « is a temperature constant controlling the relative importance of the
entropy.

3.3 Discriminator

As this work focuses on generator algorithms, we shall use the discriminator
from Yu et al. (2016) based on Kim et al. (2015). Tokens are one-hot encoded.
2-d convolution is performed with different filter sizes and finally max pooling
over time resulting in one feature per filter. A single highway-layer (Srivastava
et al., 2015) is used and finally, a logistic function.

4 Evaluation

The models are tested on the Nottingham dataset* consisting of 1037 tradi-
tional songs originally encoded in ABC notation, that have been re-encoded in
MIDI format. In order to facilitate comparison with previous work, we use the
tokenization procedure used by Lee et al. (2017), where tokens are created by
combining melody pitch-class, melody octave, chord pitch-class, chord root oc-
tave and duration. Music containing tokens appearing less than 10 times in the
data set was removed. The resulting vocabulary has |V| = 3216. The tokenized
pieces are split into sequences of length 100. The tokens are embedded in a vector
space using a random normal distribution.

4 http://abc.sourceforge.net/NMD/
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The qualitative performance, as measured by the NLL score and the BLEU
score, are reported in Table 1. The table also shows diagnostic performance
metrics of the trained generator and discriminator. For the generators, the mean
reward Rr and standard deviation of the reward Sp are reported. For the dis-
criminators, the precision pg and recall ry are reported. pg is the proportion
of samples judged to be real that are actually real. py therefore decreases as
the number of FPs increases (an FP being a case where a generated sample is
judged by the discriminator to be real). r4 is the proportion of real samples that
are correctly judged by the discriminator to be real. ry therefore decreases as
the number of false-negatives (FNs) increases (an FN being a case where a real
sample is judged by the discriminator to be generated). Of p; and r4 we shall
mainly focus on pg since it drives the GAN learning.

Experiments are conducted on the following GAN trained models: ordinary
REINFORCE (ordinary), REINFORCE extended with reward baseline (reward
baseline), and MERL REINFORCE with an entropy temperature constant of
a = 1 and reward baseline (entropy o = 1). Furthermore, for comparison, ex-
periments are conducted on a NLL model trained using back-propagation in time
(Rumelhart et al., 1986).

Like Yu et al. (2016) and Lee et al. (2017) we found that, without pre-
training, the generator never generated samples that could fool the discriminator.
Therefore the NLL model was used as an initialization for the generator, and
the discriminator was pre-trained until convergence against the NLL model.

Table 1: Performance of the ordinary model, the model with reward baseline,
and the MERL model. ~
Model |H<pdata7pgen)|BLEU|H(pgen)| RT | ST | Dd | Td

NLL 2.58 0.375| 3.17 - - - -
Ordinary 3.81 0.241 | 1.54 |0.016(0.100{0.993| 1.00
Reward baseline 4.39 0.146 | 4.11 |0.012|0.077| 1.00 {0.993
MERL o =1 5.66 0.082 | 5.26 |0.0000.001| 1.00 | 1.00

Table 1 shows that the likelihood and BLEU score are not improved by the
GAN training. From the GAN diagnostic scores, it is found that the discriminator
dominates the min-max game. The mean reward is highest for the ordinary
model, and for all GAN models, except for the ordinary, we have py = 1. This
explains that Sp is higher for the ordinary model, since for some sample z ~
Gorg(z) we have D(x) > 0.5. A good sample z, from the ordinary model with
D(x4) = 0.947 is shown in Figure 1, which consists of a motif repeated twice
with variation on the later repetition. The simple motif and chord progression
subjectively sounds folky, suggesting that some stylistic traits of the training set
have been learned.

The recall, r4, was found to be equal to 1 for all except the reward baseline
model. The MERL version model has the highest entropy at the expense of
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all other performance metrics. Experiments with @ < 1 did not result in any
significant improvements. The ordinary model has the lowest entropy.
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Fig. 1: sample z,. A four bar structure is repeated 3 times. The four bar structure
is build from a 2-bar motif-like structure, which is repeated with some variation.
The tonic and the dominant is played appropriately during the motif and its
variation.

5 Discussion

The GAN-trained models failed to produce high reward trajectories (FPs) with-
out pretraining similarly to what is reported by Yu et al. (2016) and Lee et al.
(2017). The MERL model has the lowest mean reward, which might be caused by
the log(m(z¢|s;)) term in Eq. 2 weakening the importance of the action’s reward.

Reward baseline did not seem to improve the quantitative results signif-
icantly. A possible explanation is that the mean and variance of the reward
(Table 1) are already very low. Therefore the discriminator is confident that all
trajectories are generated, and arguably no trajectory is better than the oth-
ers; hence the discrimination between good and poor trajectories by the mean
reward baseline is artificial.

For a fixed degenerate sample trajectory, sg,Zg, 70, .., ST—1,LT—1,TT—1, ST,
generated by the ordinary model, m(x¢|s:) and H(w(:|s¢)) are shown for ¢ = 15
for all models in Figure 2. This illustrates that the GAN-trained models are
obtained from the LL distribution by dropping most modes. Similar results are
obtained for ¢ > 15. As the agent samples from the initial maximum likelihood
distribution, the agent will tend to drop modes of the maximum likelihood es-
timate corresponding to TN trajectories and amplify modes corresponding to
FP trajectories. This fundamental on-policy behaviour of the REINFORCE al-
gorithm is not mitigated by its MERL variant.

The GAN-trained models do not increase the likelihood as reported by Yu
et al. (2016) on synthetic data. A likely explanation is that NLL is reported by
H(Pgen, Pdata) instead of H(pdata, Pgen) as reported in Table 1. No performance
gain in the BLEU score is observed as reported by Lee et al. (2017) and Yu et al.
(2016), but for the reasons mentioned in Section 1, the BLEU score is a poor
metric for music generation.
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Fig.2: Shows 7(-|s15) for the trained models. A few modes from the NLL model
are expanded in all the GAN trained models and the others are dropped. This
is also the case for the MERL model.
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6 Conclusion

The performance of sequence GAN on the Nottingham dataset using the or-
dinary REINFORCE, REINFORCE with reward baseline, and MERL REIN-
FORCE was evaluated. Without using pre-training all three generators failed to
raise the mean reward (lower the discriminator precision). All three generators
were then pre-trained using the NLIL estimate, which allows the generator to
generate FPs, but the min-max game was still dominated by the discriminators.
Ordinary REINFORCE achieved the highest mean reward and lowest NLL of
the GAN-trained models. Since the mean and variation of the reward baseline
REINFORCE is very low, arguably no trajectories were better or worse than any
others, which could explain the lack of performance gain by the reward baseline
REINFORCE algorithm as opposed to the original model. MERL REINFORCE
achieved the lowest mean reward and highest NLL score. A likely explanation
is that the added entropy further weakens the low learning signal. The MERL
REINFORCE-trained model achieved the highest entropy but failed to funda-
mentally solve the MC/MD problem on selected modes. It is reasoned that the
Monte Carlo trajectories of REINFORCE do not deviate too much from their
pretrained modes. Therefore if the reward is high the mode will be amplified;
if it is low, it will be dropped. This makes the agents reluctant to explore new
modes and sequence GAN using REINFORCE variants might be better suited
for fine-tuning generative models rather than learning generative distributions
from scratch.

7 Future work

As the generators carry out Monte Carlo sampling of full trajectories, reducing
the number of tokens could severely reduce the variance of the trajectories,
especially for models trained without pre-training. Some options could be to (1)
transpose all training examples to a fixed key, or (2) to drop the chord octave, or
(3) to interleave chord and melody events in the sequence instead of combining
them in a token (as is done in Huang et al. (2018)). It is possible to consider other
RL algorithms, such as actor critique methods or value-based methods. However,
if the reward signal changes too much, it is likely that also a value-based network
would perform poorly. In order to better understand the possibilities of using
reinforcement learning for GAN training on sequences, it is crucial to determine
how the reward function changes during training. The learning signal is weak
since it is only nonzero on the last state transition. As a convolutional network
is used for the discriminator, it is likely that the smaller filters find low-scale
features, that could be used to produce a reward signal for states corresponding
to sequence prefixes. This could potentially reduce the variance of the reward
signals, allow discounting and online learning.
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